
Dieses Foto zeigt einen Ring, der wie ein Regenbogen aussieht. Es ist eine Korona, die durch Beugung des Mondlichtes an Wassertropfen der Wolken entsteht. Im Gegensatz hierzu entsteht ein Regenbogen durch Brechung.
mit Bildern und Web-Apps
Dieses Foto zeigt einen Ring, der wie ein Regenbogen aussieht. Es ist eine Korona, die durch Beugung des Mondlichtes an Wassertropfen der Wolken entsteht. Im Gegensatz hierzu entsteht ein Regenbogen durch Brechung.
Dieses Foto wurde mit 1/10 s belichtet. Die einzelnen Schneeflocken fliegen ca. 15cm in dieser Zeit, die Geschwindigkeit beträgt also ca. 1,5m/s oder etwa 5km/h. Größere Schneeflocken fallen natürlich viel langsamer. In der Vergrößerung links oben sieht man deutlich, dass die Bewegung gestückelt aussieht. Das liegt daran, dass die Laterne 100 mal pro Sekunde leuchtet (100Hz), während der Belichtungszeit wird die Schneeflocke daher 10 mal beleuchtet. Im Gegensatz zum Freien Fall bei Neonlicht fällt eine Schneeflocke aufgrund des Luftwiderstandes gleichmäßig. Ein Regentropfen fällt viel schneller.
Der Landschaftspark Nord in Duisburg bei Nacht.
Die Auflösung eines Objektivs ist beugungsbegrenzt von der Blende abhängig.
In dem Bild sieht man kleine Ausschnitte (ca. 100 Pixel breit) eines Fotos, dass mit einem 50mm Objektiv aus 5m Entfernung von einem Laptop Bildschirm aufgenommen wurde. Man sieht deutliche Unschärfe bei den größeren Blendenzahlen (22). Die niedrigere Qualität bei der Blende 1,8 liegt an anderen Abbildungsfehlern.
Aufgrund der Beugungsbegrenzung kann man den Durchmesser eines Bildpunktes d=2,44·λ·B, bei der Blendenzahl B und der Wellenlänge λ, bestimmen. Mit einem typischen Wert λ=555nm erhält man d=B·1,3 μm. Die typische Pixelgröße heutiger digitaler Spiegelreflexkameras liegt bei ca. 5μm, so dass man schon bei Blende 4 die theoretische Grenze erreicht. Digitale Kompaktkameras haben teilweise deutlich kleinere Pixelgrößen, da sie mit kleineren Bildsensoren arbeiten.
Diesmal wurde ein einfaches Teleskop verwendet, um die ISS zu fotografieren. Mit etwas Nachschärfen sind einige Details zu erkennen.
Nachdem beim 1. Versuch die ISS nur zu erahnen war, wurde jetzt ein einfaches Teleskop mit 1m Brennweite verwendet, und der Sensor der Digitalkamera direkt in den Fokus justiert. Das Originalfoto rechts zeigt die mangelhafte Qualität des Spiegels, das Nachschärfen mit GIMP brachte aber dennoch einige Details hervor. Die Spiegelmängel scheinen eine Gaußverteilung aufzuweisen. Unten ist vermutlich das angedockte Spaceshuttle zu sehen. Zu dem Zeitpunkt gab es Außenarbeiten von zwei Astronauten, aber um die Astronauten zu sehen, braucht man doch ein erheblich besseres Teleskop.
Die renommierte Wissenschaftszeitschrift „Nature“ ist gestern 140 Jahre alt geworden. Zu diesem Anlass wurde die 1. Ausgabe online verfügbar gemacht. Es ist spannend, was 1869 in einer wissenschaftlichen Zeitschrift veröffentlicht wurde. Z. B. ein Artikel über den naturwissenschaftlichen Unterricht in der Schule mit den naturwissenschaftlichen Schulfächern: experimentelle Mechanik, Chemie und Physiologie! Für die experimentelle Mechanik werden 3 Wochenstunden über 2 Jahre veranschlagt.
Abendhimmel zeigt die unterschiedliche Streuung von unterschiedlichen Wellenlängen.
Ein Blick auf den Abendhimmel zeigt alle Himmelsfarben, vom Abendrot bis zum Blau des Himmels. Der Grund dafür liegt in der unterschiedlichen Streuung von unterschiedlichen Wellenlängen. Kurze Wellenlängen werden stark gestreut, daher überwiegt das blaue Licht oben am Himmel (in großem Winkel von der Lichtquelle). Direkt über dem Horizont überwiegt aus dem selben Grund das rote Licht, da das blaue Licht aus der „Strahlrichtung“ gestreut wird.
Das Regenbogenfoto darf nicht fehlen!
Ein Regenbogenfoto darf natürlich nicht fehlen. Der Regenbogen entsteht durch Brechung des Lichtes in den Regentropfen.
15 Jahre alter C Sourcecode des Strategiespiels Kalaha wurde auf Javascript portiert, damit es einfach in jedem Browser gespielt werden kann.
Etwas Off-Topic, aber es geht immerhin um das Strategiespiel Kalaha. Das Spiel ist in dem Wikipedia Artikel gut erklärt. Es ist relativ anspruchsvoll, aber in den meisten Varianten bereits mathematisch „gelöst“, d.h. man weiß, wer bei optimalem Spiel gewinnt. Es gibt dennoch im Internet kaum Möglichkeiten, das Spiel zu spielen. Daher entschloss ich mich 15 Jahre alten C-Sourcecode auf Javascript zu portieren, damit es einfach in jedem Browser gespielt werden kann. Die aktuellen Browser sollen Javascript relativ schnell ausführen.
Die Suche nach einem Werkzeug, um die Portierung zu automatisieren, war nicht erfolgreich: also Handarbeit. Meine Javascript Erfahrungen waren relativ begrenzt. Ich nahm also Netbeans zur Hand und hoffte, dass mir die problematischen Stellen markiert werden. Nach 30 Minuten waren alle rot unterschlängelten Stellen entfernt, ich nahm mir einen Kaffee und begann mit dem rudimentären Benutzerinterface.
Keine Stunde später war der 15 Jahre alte Code lauffähig, und mein Browser spielte mit mir Kalaha. So einfach hätte ich mir das nicht vorgestellt.
Zugegeben, die Performance lässt zu wünschen übrig: Ich habe keine genauen Vergleichszahlen, aber schneller als die C-Version auf einem 8MHz PC vor 15 Jahren ist die Javascript-Version nicht. Deshalb wurde kurzer Hand die Spielstärke reduziert.
Die 15 Jahre alte Version war übrigens bereits ein Rewrite einer über 25 Jahre alten Assembler-Version für den SC/MP Mikroprozessor, die auf dem 1MHz Prozessor auch nicht schwächer spielte.
Zu den ersten Eigenschaften von Licht, die man kennenlernt, gehört die geradlinige Ausbreitung.
Zu den ersten Eigenschaften von Licht, die man kennenlernt, gehört die geradlinige Ausbreitung. Manchmal ist diese sehr schön zu sehen.